Scalar curvature and $Q$-curvature of random metrics
نویسندگان
چکیده
منابع مشابه
Q-curvature and Poincaré Metrics
This article presents a new definition of Branson’s Q-curvature in even dimensional conformal geometry. The Q-curvature is a generalization of the scalar curvature in dimension 2: it satisfies an analogous transformation law under conformal rescalings of the metric and on conformally flat manifolds its integral is a multiple of the Euler characteristic. Our approach is motivated by the recent w...
متن کاملRanders Metrics of Scalar Flag Curvature
We study an important class of Finsler metrics — Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.
متن کاملConstant scalar curvature metrics with isolated singularities
We extend the results and methods of [6] to prove the existence of constant positive scalar curvature metrics g which are complete and conformal to the standard metric on S \ Λ, where Λ is a disjoint union of submanifolds of dimensions between 0 and (N − 2)/2. The existence of solutions with isolated singularities occupies the majority of the paper; their existence was previously established by...
متن کاملConformal Metrics with Constant Q-Curvature
We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Research Announcements in Mathematical Sciences
سال: 2010
ISSN: 1935-9179
DOI: 10.3934/era.2010.17.43